## 862. The Crystal and Molecular Structure of 3-Methylbenzo-thiazoline-2-thione.

By P. J. Wheatley.

The crystal and molecular structure of 3-methylbenzothiazoline-2-thione has been determined by two-dimensional $X$-ray diffraction methods. The structure proposed previously on chemical and other physicochemical grounds is confirmed. The dimensions of the molecule have been determined and are compared with those in similar molecules.
The structure of the 3-methylbenzothiazoline-2-thione molecule (I) was determined chemically by Mills, Clark, and Aeschlimann. ${ }^{1}$ Their conclusions were confirmed and extended to the isomeric 2-methylthiobenzothiazole (II) by Morton and Stubbs. ${ }^{2}$
(I)



Nevertheless recent work on the other physical properties of these and related molecules has led to the belief that the earlier work should be checked. Accordingly a two-dimensional $X$-ray crystallographic study of the higher-melting isomer has been carried out. The earlier work is confirmed in every respect.

Table 1.
Fractional atomic co-ordinates.

|  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Atom | $x / a$ | $y / b$ | $z / c$ | Atom | $x / a$ | $y / b$ | $z / c$ | Atom | $x / a$ | $y / b$ | $z / c$ |
| $\mathrm{~S}_{1}$ | 0.023 | 0.404 | 0.868 | $\mathrm{C}_{2}$ | 0.175 | -0.021 | 0.569 | $\mathrm{C}_{6}$ | 0.535 | 0.522 | 0.754 |
| $\mathrm{~S}_{2}$ | -0.159 | 0.000 | 0.708 | $\mathrm{C}_{3}$ | 0.226 | 0.490 | 0.834 | $\mathrm{C}_{7}$ | 0.481 | 0.682 | 0.855 |
| $\mathrm{~N}^{2}$ | 0.159 | 0.150 | 0.680 | $\mathrm{C}_{4}$ | 0.280 | 0.330 | 0.733 | $\mathrm{C}_{\mathbf{8}}$ | 0.326 | 0.672 | 0.896 |
| $\mathrm{C}_{1}$ | 0.008 | 0.165 | 0.743 | $\mathrm{C}_{5}$ | 0.435 | 0.340 | 0.693 |  |  |  |  |

## Experimental

3-Methylbenzothiazoline-2-thione. $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NS}_{2} . \quad M 181 \cdot 3$. Monoclinic. $\quad a=8 \cdot 06_{5}, b=5 \cdot 67_{9}$, $c=9 \cdot 16_{2} \AA, \beta=98^{\circ} 36^{\prime} . \quad U=415 \AA^{3} . \quad D_{\mathrm{m}}=1.44$ (by flotation), $Z=2 . \quad D_{c}=1 \cdot 451$, $F(000)=188$. Space group $P 2_{1}\left(C_{2}{ }^{2}\right.$, No. 4). $\mathrm{Cu}-K_{\alpha}$ radiation ( $\lambda 1.542 \AA$ ), single-crystal rotation and Weissenberg photographs.

The lengths of the crystal axes exclude $P 2_{1} / m$ as a possible space group. $\quad P 2_{1}$ was assumed and it is confirmed by the subsequent analysis. Multiple-film Weissenberg photographs were taken round $[b]$ and $[a]$. Relative intensities were estimated visually by comparison with

[^0]standard strips prepared from the same crystals. No correction was made for absorption ( $\mu=52.1 \mathrm{~cm} .^{-1}$ ). $135 h 0 l$ and $630 k l$ reflexions were observed to be non-zero. Each projection was solved from a sharpened Patterson synthesis from which the positions of the two sulphur atoms could readily be located. Successive Fourier syntheses gave the positions of the lighter atoms, and each projection was then refined by difference syntheses. The scattering factors used were those of Berghuis et al. ${ }^{3}$ for the carbon and nitrogen atoms, and that of Tomiie and Stam ${ }^{4}$ for the sulphur atoms. Hydrogen atoms were ignored. An isotropic temperature factor $B=4 \cdot 66 \AA^{2}$ proved satisfactory for each projection. The final agreement index was $R=\mathbf{1 0 . 7} \%$ for the $h 0 l$ and $R=10.6 \%$ for the $0 k l$ projection. These agreement indices refer to the observed terms only.

## Results

The co-ordinates of the atoms are given in Table 1, and the observed and calculated structure factors in Table 2. Figs. $1(a$ and $b)$ show the final Fourier maps of the $h 0 l$ and

Table 2.
Observed and calculated structure factors for one asymmetric unit.

| hol | Fo | $F_{c}$ | $h 0 l$ | $F_{0}$ | ${ }_{F} \mathrm{c}$ | $h 0 l$ | $\mathrm{F}_{0}$ | $F_{\mathrm{c}}$ | $h 0 l$ | $i_{0}$ | $F_{c}$ | $h 0 l$ | $F_{0}$ | $F_{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0.1 | 4.88 | $6 \cdot 39$ | 7 | 0.85 | 1.26 | 6 | $1 \cdot 11$ | $-1.56$ | 9 | 0.85 | $-0.57$ | 8 | $2 \cdot 67$ | - 8.49 |
| 2 | $30 \cdot 33$ | $-32 \cdot 93$ | 8 | $3 \cdot 12$ | $2 \cdot 54$ | 7 | $1 \cdot 35$ | 1.81 | 10 | 2.95 | -3.65 |  |  |  |
| 3 | 0.92 | -1.31 | 9 | $2 \cdot 40$ | $2 \cdot 89$ |  |  |  | 11 | 0.84 | $-0.80$ | $\overline{6} .0 .1$ | $2 \cdot 64$ | $-2 \cdot 50$ |
| 4 | $3 \cdot 43$ | $-3 \cdot 17$ |  |  |  | 7.0 .3 | $6 \cdot 29$ | $6 \cdot 09$ |  |  |  | 2 | $7 \cdot 27$ | -6.75 |
| 5 | $14 \cdot 28$ | $-15.05$ | 3.0.1 | $10 \cdot 70$ | 10.92 | 5 | $4 \cdot 11$ | -4.41 | 3.0.1 | 14.87 | $14 \cdot 23$ | 3 | $0 \cdot 82$ | $-0 \cdot 68$ |
| 7 | $10 \cdot 56$ | 11.26 | 2 | $8 \cdot 00$ | $8 \cdot 51$ | 6 | $1 \cdot 10$ | $-1.26$ | 2 | $7 \cdot 97$ | $6 \cdot 97$ | 5 | $3 \cdot 11$ | $-3 \cdot 59$ |
| 8 | $2 \cdot 12$ | $1 \cdot 42$ | 3 | $5 \cdot 28$ | $-5.97$ |  |  |  | 3 | 15-32 | $-15 \cdot 83$ | 6 | $1 \cdot 95$ | $0 \cdot 93$ |
| 11 | $1 \cdot 13$ | $-0.96$ | 4 | $3 \cdot 51$ | $-4.59$ | 8.0.1 | $2 \cdot 04$ | 1.48 | 4 | $8 \cdot 61$ | -8.64 | 7 | $4 \cdot 25$ | $4 \cdot 74$ |
|  |  |  | 5 | $2 \cdot 69$ | $-2.07$ |  |  |  | 5 | $5 \cdot 29$ | $5 \cdot 40$ | 9 | $0 \cdot 96$ | $-0.71$ |
| 1.0 .0 | $17 \cdot 66$ | 15.80 | 6 | $3 \cdot 56$ | $-3 \cdot 17$ | 9.0 .1 | $1 \cdot 67$ | 1.61 | 7 | $2 \cdot 22$ | $-2.58$ |  |  |  |
| 2 | 6.49 | 6.83 | 7 | $0 \cdot 87$ | $-1.34$ | 2 | 1.99 | $2 \cdot 46$ | 8 | $7 \cdot 27$ | 6.48 | 7.0 .1 | 1.50 | $-2 \cdot 00$ |
| 3 | 8.99 | $-7.90$ | 8 | $3 \cdot 57$ | $\mathbf{4 . 2 1}$ |  |  |  | 9 | 1.46 | 1.51 | 2 | $7 \cdot 52$ | -7.61 |
| 4 | $7 \cdot 71$ | $6 \cdot 82$ |  |  |  | 10.0.1 | 1.75 | 1.78 | 10 | $2 \cdot 77$ | -2.90 | 3 | $2 \cdot 12$ | -1.89 |
| 5 | $6 \cdot 63$ | $6 \cdot 32$ | 4.0.1 | $13 \cdot 69$ | $13 \cdot 65$ |  |  |  | 11 | 0.79 | $-0.78$ | 4 | $2 \cdot 61$ | $3 \cdot 08$ 1.16 |
| 6 | 10.29 | $10 \cdot 19$ | 2 | $2 \cdot 98$ | $2 \cdot 87$ | 1.0.1 | $9 \cdot 34$ | $-9.72$ |  |  | - 78 | 5 | $0 \cdot 86$ | $-1 \cdot 16$ |
| 7 | 6.71 | $5 \cdot 66$ | 3 | $11 \cdot 54$ | $-11.78$ | 2 | $9 \cdot 76$ | $-10 \cdot 21$ | 7.0.1 | $2 \cdot 67$ | 1.79 | 6 | $1 \cdot 44$ | $1 \cdot 03$ |
| 10 | $0 \cdot 92$ | -0.87 | 5 | $3 \cdot 23$ | $2 \cdot 46$ | 3 | $12 \cdot 18$ | $-10 \cdot 45$ | 2 | $7 \cdot 42$ | $-7.39$ | 7 | $3 \cdot 31$ | $3 \cdot 19$ |
|  |  |  | 6 | $3 \cdot 12$ | $-3 \cdot 14$ | 4 | $0 \cdot 78$ | $0 \cdot 78$ | 3 | 8.29 | $-7 \cdot 66$ | 8.0 .2 | $2 \cdot 24$ | -1.58 |
| 1.0 .1 | $10 \cdot 78$ | 11.00 | 7 | 1.48 | $-1.52$ | 5 | $2 \cdot 64$ | -2.02 | 4 | $8 \cdot 20$ | $-7 \cdot 93$ | 8.0 .2 3 | $2 \cdot 24$ $2 \cdot 79$ | -1.5.3 |
| 2 | $2 \cdot 32$ | $3 \cdot 00$ | 8 | $3 \cdot 49$ | $4 \cdot 12$ | 6 | 1.79 | 1.03 | 6 | $3 \cdot 55$ | $3 \cdot 94$ | 7 | 2.05 2.05 | -2.78 1.48 |
| 3 | $7 \cdot 21$ | $7 \cdot 07$ |  |  |  | 7 | $5 \cdot 39$ | $5 \cdot 44$ | 7 | $6 \cdot 32$ | $5 \cdot 63$ | 8 | 1.72 | $1 \cdot 78$ |
| 4 | $7 \cdot 24$ | -8.39 | 5.0 .1 | $8 \cdot 60$ | $7 \cdot 38$ | 8 | $2 \cdot 29$ | $2 \cdot 55$ | 8 | 4-3: | $3 \cdot 55$ | 8 | 1.72 | 1.78 |
| 5 | 7.59 | $-7 \cdot 38$ | 3 | $3 \cdot 41$ | $-3 \cdot 22$ | 10 | 1.08 | $-1.09$ | 9 | $2 \cdot 00$ | -1.04 | $\overline{9} .0 .1$ | 0.7:) | 0.98 |
| 7 | $4 \cdot 00$ | $4 \cdot 42$ | 5 | $2 \cdot 45$ | -3.23 |  |  |  | 10 | 2.09 | $-2.09$ | - 2 | 1.27 | $-1 \cdot 36$ |
| 11 | 1.59 | $-1.66$ | 6 | $2 \cdot 58$ | $-3 \cdot 14$ | E.0.1 | $13 \cdot 08$ | 16.83 | 11 | $1 \cdot 57$ | $-1.80$ | 3 | $3 \cdot 05$ | $-3 \cdot 19$ |
|  |  |  | 7 | 1.77 | $2 \cdot 34$ | $\stackrel{3}{2}$ | $6 \cdot 33$ | -4.4: |  |  |  | 5 | $2 \cdot 37$ | $2 \cdot 65$ |
| 2.0 .1 | $4 \cdot 19$ | $3 \cdot 61$ | 8 | 1.91 | $2 \cdot 35$ | 3 | $16 \cdot 60$ | $-16.13$ | $\overline{5} .0 .1$ | $8 \cdot 25$ | $-8.07$ | 6 | $1 \cdot 3 \overline{5}$ | $0 \cdot 63$ |
| 3 | $2 \cdot 42$ | $-1.75$ |  |  |  | 4 | $2 \cdot 38$ | $3 \cdot 70$ | 2 | $5 \cdot 03$ | -4.65 |  |  |  |
| 4 | $12 \cdot 84$ | $-12 \cdot 65$ | 6.0.1 | $3 \cdot 76$ | $3 \cdot 47$ | 6 | $2 \cdot 35$ | $-3.58$ | 4 | $4 \cdot 36$ | $-4.70$ | $\overline{1} 0.0 .1$ | $1 \cdot 10$ | $-1.05$ |
| 5 | $3 \cdot 21$ | -2.86 | 4 | $2 \cdot 30$ | $-2 \cdot 13$ | 7 | 1.84 | $1 \cdot 74$ | 6 | $7 \cdot 19$ | 6.98 | 3 | 1.36 | $-1 \cdot 0 ;$ |
| 6 | $3 \cdot 09$ | $3 \cdot 86$ | 5 | $4 \cdot 06$ | $-4 \cdot 14$ | 8 | 6.31 | $7 \cdot 19$ | 7 | 3.79 | $2 \cdot 30$ | 4 | 0.84 | $-0.92$ |
| $0 k l$ | $F_{0}$ | $A_{\text {c }}$ | $B_{c}$ | $\left\|F_{c}\right\|$ | 0Rl | Io | $A_{c}$ | $B_{c}$ | $\left\|F_{c}\right\|$ | 0kl | $F_{0}$ | $A_{\text {c }}$ | $B_{\text {c }}$ | $\|\mathrm{Fc}\|$ |
| 0.2.0 | 12.75 | $13 \cdot 47$ | $-3 \cdot 43$ | $13 \cdot 90$ | 7 | $5 \cdot 75$ | $4 \cdot 23$ | $-3 \cdot 19$ | $5 \cdot 30$ | 7 | 1.82 | 0.71 | $-1.55$ | 1.70 |
| 4 | $6 \cdot 11$ | $0 \cdot 65$ | $-5 \cdot 61$ | $5 \cdot 65$ | 8 | $2 \cdot 61$ | $-1.16$ | $-1 \cdot 33$ | 1.76 | 8 | 1.96 | $-1.87$ | $-1 \cdot 06$ | $2 \cdot 15$ |
| 6 | $4 \cdot 07$ | $3 \cdot 82$ | $0 \cdot 79$ | 3.90 | 9 | 1.14 | $-1.09$ | $0 \cdot 03$ | 1.09 | 9 | 1.58 | $-1.26$ | $-0.65$ | $1 \cdot 42$ |
| 0.1.1 | $12 \cdot 71$ | $15 \cdot 37$ | $4 \cdot 32$ | $15 \cdot 97$ | 0.3.1 | $8 \cdot 40$ | $5 \cdot 49$ | $-7.31$ | 9.18 | 0.5.1 | $4 \cdot 55$ | -2.26 | $-3 \cdot 14$ | $3 \cdot 87$ |
| 2 | $28 \cdot 37$ | -6.29 | 26.41 | $27 \cdot 15$ | 2 | $7 \cdot 90$ | 6.34 | 0.86 | $6 \cdot 89$ | 2 | $2 \cdot 95$ | $3 \cdot 00$ | 0.44 | $3 \cdot 04$ |
| 3 | $10 \cdot 02$ | $-7.88$ | $7 \cdot 28$ | 10.73 | 3 | $4 \cdot 17$ | 3.48 | $-1.49$ | $3 \cdot 79$ | 3 | 2.22 | $2 \cdot 36$ | $-0.28$ | $2 \cdot 38$ |
| 4 | $7 \cdot 92$ | $5 \cdot 17$ | $-7.97$ | $9 \cdot 51$ | 4 | 3.59 | 0.03 | -4.15 | $4 \cdot 15$ | 4 | $2 \cdot 18$ | $-1.18$ | $-1.50$ | $1 \cdot 90$ |
| 5 | $7 \cdot 51$ | $-0.28$ | $-7.47$ | $7 \cdot 48$ | 5 | $5 \cdot 45$ | $-4.85$ | $-0.20$ | $4 \cdot 86$ | 5 | 1.74 | $-1.52$ | $0 \cdot 40$ | $1 \cdot 57$ |
| 6 | $4 \cdot 47$ | $-3 \cdot 47$ | $0 \cdot 67$ | $3 \cdot 53$ | 6 | $6 \cdot 97$ | -3.48 | 6.31 | $7 \cdot 20$ | 6 | $2 \cdot 72$ | 0.32 | 2.87 | $2 \cdot 88$ |
| 7 | $3 \cdot 05$ | $0 \cdot 12$ | -3.27 | $3 \cdot 27$ | 7 | 1.2\% | $-0.60$ | $0 \cdot 08$ | $0 \cdot 60$ |  |  |  |  |  |
| 8 | $1 \cdot 51$ | $1 \cdot 21$ | $-1.06$ | $1 \cdot 60$ | 8 | $1 \cdot 66$ | $0 \cdot 77$ | -2.26 | $2 \cdot 39$ | 0.6.1 | $1 \cdot 96$ | $-1 \cdot 50$ | $1 \cdot 11$ | 1.86 |
| 9 | $4 \cdot 62$ | 0.78 | $4 \cdot 11$ | $4 \cdot 18$ | 9 | 1.84 | $1 \cdot 30$ | 1.39 | $1 \cdot 90$ | 2 | $2 \cdot 70$ | $-8 \cdot 07$ | $-0 \cdot 37$ | $3 \cdot 09$ |
| 10 | $1 \cdot 37$ | 0.75 | $1 \cdot 26$ | 1.47 | 10 | 1.48 | $0 \cdot 95$ | 0.03 | 0.95 | 3 | $2 \cdot 42$ | 2.28 | -0.81 | $2 \cdot 42$ |
|  |  |  |  |  |  |  |  |  |  | 4 | $2 \cdot 02$ | $2 \cdot 11$ | -0.49 | $2 \cdot 17$ |
| 0.2.1 | $4 \cdot 88$ | -2.83 | $-2.41$ | $3 \cdot 72$ | 0.4.1 | 4.94 | -3.42 | -3.28 | $4 \cdot 74$ | 5 | 1.37 | $-1 \cdot 37$ | $-0.48$ | 1-4: |
| 2 | $5 \cdot 69$ | $-5 \cdot 75$ | $-0.67$ | $5 \cdot 79$ | 2 | 1.87 | -2.07 | $-0.72$ | $2 \cdot 20$ |  |  |  |  |  |
| 3 | $5 \cdot 11$ | -0.26 | $4 \cdot 25$ | $4 \cdot 26$ | 3 | $4 \cdot 31$ | $2 \cdot 43$ | 3.86 | $4 \cdot 56$ | 0.7 .1 | 1.24 | -0.54 | -1.21 | $1 \cdot 32$ |
| 4 | $5 \cdot 03$ | $1 \cdot 64$ | $3 \cdot 53$ | 3-90 | 4 | $6 \cdot 75$ | $4 \cdot 13$ | $4 \cdot 58$ | $6 \cdot 17$ | 2 | 1.19 | -1.34 | $0 \cdot 45$ | $1 \cdot 42$ |
| 5 | $2 \cdot 06$ | $-1.94$ | $1 \cdot 24$ | $2 \cdot 31$ | 5 | 1.85 | $0 \cdot 63$ | $1 \cdot 12$ | $1 \cdot 29$ | 3 | 1.19 | -1.24 | $0 \cdot 19$ | $1 \cdot 26$ |
| 6 | $1 \cdot 13$ | $-0 \cdot 10$ | 0.91 | 0.91 | 6 | 1.06 | -0.98 | $-0.69$ | 1.20 |  |  |  |  |  |

0 kl projections, respectively. The molecule which is drawn in corresponds to the coordinates listed in Table 1. Fig. 2 shows the numbering of the atoms, the bond lengths and the bond angles. The whole molecule is planar within the limits of experimental

[^1]4 Tomiie and Stam, Acta Cryst., 1958, 11, 126.
error. The bond lengths and angles in general agree well with the expected values. ${ }^{5}$ There are, however, some considerable differences between the present lengths and those found for the parent benzothiazoline-2-thione. ${ }^{6}$ These differences occur round the nitrogen atom and lead to what appear to be more reasonable lengths and angles in the five-membered ring. The present results are not in accord with the curve relating $\mathrm{C}-\mathrm{S}$ and $\mathrm{C}-\mathrm{N}$ bond lengths in molecules of this type. ${ }^{7}$ It is doubtful, however, whether the


Fig. I. (a) Projection of the contents of the unit cell down [b]. (b) Projection of the contents of the unit cell down [a]. (The contours are drawn at equal arbitrary intervals with some of the higher contours in the sulphur atoms omitted.

Fil. 2. The numbering of the atoms, the bond lengths, and the interatomic angles.

proposed relationship could have a very wide validity, particularly as it ignores the accurate refinement of thiourea by Kunchur and Truter. ${ }^{8}$ There will clearly be some connection between the lengths of the $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{S}$ bonds, but several factors will probably play a part. The most important influence is whether the carbon atom $\mathrm{C}_{(1)}$ is attached to one or to two nitrogen atoms, but even this can be affected if the nitrogen atoms are involved in the formation of a ring. There appear to be at present too few structure determinations to enable the effect of the different factors to be sorted out.

One strange similarity between the results of the present work and those for benzo-thiazoline-2-thione ${ }^{6}$ is the distortion of the benzene ring. The difference between

[^2]dimensions of the benzene ring shown in Fig. 2 and a regular hexagon are probably within the limits of experimental error, but the results of the two analyses agree so well in this respect that it is tempting to believe that the distortion is real.

The intermolecular distances are normal, and there are no close approaches.
I thank Dr. R. A. Baxter and K. N. Ayad of Monsanto Chemicals Ltd., Ruabon, for suggesting this problem and for supplying the samples.

Monsanto Research S.A., Binzstrasse 39,
ZUrich 3/45, Switzerland.


[^0]:    ${ }^{1}$ Mills, Clark, and Aeschlimann, J., 1923, 2362.
    a Morton and Stubbs, J., 1939, 1321.

[^1]:    ${ }^{3}$ Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.

[^2]:    5 "' Tables of Interatomic Distances," Chem. Soc. Special Publ., No. 11.
    ${ }^{6}$ Tashpulatov, Zvonkova, and Zhdanov, Kristallographiya, 1957, $2,33$.
    7 Zvonkova, Astakhova, and Glushkova, Kvistallographiya, 1960, 5, 547.
    ${ }^{8}$ Kunchur and Truter, $J ., 1958,2551$.

